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Abstract
We present the basic system of equations for a theory of superconductivity for
systems with chaotically distributed paramagnetic impurities of substitution
in which the Migdal theorem is violated (it cannot be supposed ω0 � EF ).
We take into account electron–phonon and impurity diagrams as well as
supplementary ones corresponding to the intersection of electron–phonon and
electron–impurity lines. Decrease of the quantity TC with increase of impurity
concentration is shown to weaken in comparison with the case of the usual
superconductors. The degree of this decrease is determined by quantities m
and qc. The coefficient of the isotope effect α, energy gap and order parameter
at T = 0 are also calculated. The behaviour of these quantities as a function
of impurity concentration depends on the Migdal parameter m = ω0/EF and
transferred momentum qc.

1. Introduction

Recently we have clearly seen the development of the theory with a phonon-mediated pairing
mechanism in some papers. This fact is due to the ability to describe the high values of
the temperature of the superconducting transition TC in MgB2 (TC ≈ 40 K) [1] and in
fullerenes [2], as well as the experimental confirmation of the considerable influence of the
interaction on the dynamics of electrons in oxide superconductors [3]. These factors reveal
the great importance of the electron–phonon interaction.

Among the factors playing an important role in obtaining high values of TC we can
point out the following: strong electron–phonon interaction [4, 5], the presence of van Hove
singularities or of flat areas in the electron energy spectrum [6, 7], overlapping of energy bands
on the Fermi surface (layered structure) [8, 9] and others. In addition the oxide ceramics,
fullerenes and organic superconductors are systems with strong electron correlations and low
values of Fermi energy. Both these factors have ordinarily not enforced the superconductivity.
Nevertheless, there is a necessity to go beyond the Migdal–Eliashberg theory and to build
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a theory of superconductivity for nonadiabatic systems in which Fermi energy and Debye
energy are comparable as well as to account for the presence in the system of strong electron
correlations. There are a large number of papers considering this (see for example, [10–
21]). In such systems we have to take into consideration vertex and ‘intersecting’ diagrams
over electron–phonon interactions in mass operators of Green functions which in essence
correspond to the account of additional multiparticle effects.

To our mind very interesting results were obtained in [11, 12] for the case of pure
nonadiabatic materials. The main effects are due to the vertex corrections and the cross
diagrams that show a complex behaviour with respect to the exchanged momentum (q) and
frequency (ω). Positive corrections and a corresponding enhancement of TC arise naturally
if the electron–phonon scattering is characterized by small q values. It is possible to have
enhancements or reductions of TC depending on the specific material properties. Vertex
corrections and the cross diagram show a similar behaviour with respect to q and ω. For this
reason it is useful to introduce the cut-off qc for the electron–phonon interaction. The value
of qc is assumed to be small because of the effect of strong electron correlations on electron–
phonon interactions. This idea is corroborated by simple models [11, 12] and is confirmed
by the study of the electron–phonon interaction in such systems [22, 23]. The account of
the effects of nonadiabaticity has been shown to produce an essential renormalization of the
electron–phonon coupling λ in the Eliashberg equations [24] as well as an increase of the
temperature of the superconducting transition at low values of the cut-off momentum qc in the
electron–phonon interaction. At λ ≈ 0.5–1 with the effects of nonadiabaticity, the quantity TC

achieves values equal to the values corresponding to λ ≈ 3 in the Eliashberg equations with
strong electron–phonon coupling.

Recent studies of nonadiabatic superconductors demonstrate the significance of the
influence of impurity (nonmagnetic and magnetic) on thermodynamic, kinetic and other
properties. Investigation of the role of impurity can clarify the nature of high-TC

superconductivity. In this framework the influence of the magnetic chaotically distributed
impurity on the temperature of a superconducting transition, the isotope effect and the energy
gap is attracting researchers’ attention. Nowadays the Abrikosov–Gor’kov’s theory [25] (see
also [26]) is widely used to describe superconductivity in the nonadiabatic (including high-
TC ) systems with magnetic impurity. This theory is based on the adiabatic BCS–Bogolyubov
theory of superconductivity presupposing the following condition: the Debye energy is much
less than the Fermi energy (ω0 � EF ). This condition is met in ordinary superconductors.
Under the Migdal theorem [27] we can neglect all the vertex corrections in mass operators for
the Green functions. In the fullerenes, oxides and organic superconductors the Fermi energy
and Debye energy can be quantities of the same order [28, 29] and therefore we have to take
into consideration the additional multiparticle effects.

The main purposes of this paper are to study the influence of a magnetic impurity on
the properties of nonadiabatic superconductors (ω0 � EF) and to answer the question: to
what degree is the Abrikosov–Gor’kov theory [25] valid in describing the suppression of
superconductivity in high-TC materials and other systems with strong electron correlations, in
which the Debye energy and Fermi energy are comparable.

This paper is organized in the following way. Section 2 discusses the Green functions and
the mass operators for the nonadiabatic systems with a paramagnetic impurity. Section 3
presents the equation for the temperature of the superconducting transition TC and the
expression for the coefficient of an isotope effect as well as the analytical expressions in
the field of low and high values of impurity concentrations. Section 4 contains the equations
obtained for the order parameter � at T = 0 and the expression for the energy gap �g.
Section 5 is devoted to numerical calculations and the conclusion.
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2. Green functions and mass operators

The system considered is described by the Hamiltonian

H = H0 +
∑

σ

∫
d�x ψ+

σ (�x)ψσ (�x)ϕ(�x) +
∑
α,β

∫
d�x ψ+

α (�x)Vαβ(�x)ψβ(�x) (1)

where H0 is the Hamiltonian of free electrons and phonons, the second term corresponds to
the electron–phonon interaction and the third term to the interaction between electrons and the
magnetic impurity. ψα(�x) is the annihilation operator of the electron with spin α in position
�x , ϕ(�x) is the phonon operator:

Vαβ(�x) =
∑

n

Vαβ(�x − �Rn) = V1(�x)δαβ + 1
2
�S�σαβ V2(�x), (2)

�σ is the spin-matrix vector and V1 and V2 are the scattering potentials on the impurity.
This Hamiltonian coincides formally with the Froelich Hamiltonian when a magnetic

impurity is taken into account. Nevertheless, in this Hamiltonian the presence of strong electron
correlations induced by the Coulomb interaction are taken into account. It is performed by
cutting off the electron–phonon and impurity interactions in the momentum space under the
low values of the transferred momentum qc and qc1, respectively. This approach for the
electron–phonon interaction was used in [11, 12] and was based on the studies of the influence
of strong electron correlations on the electron–phonon interaction [22]. Low values of qc

promote both positive values of the vertex functions and a dramatic rise in the temperature of
the superconducting transition.

First, we introduce the electron and the phonon temperature (Matsubara’s) Green
functions:

Gβα(xx ′) = −〈T ψβ(x)ψ+
α (x ′)〉 F̃αα′ (xx ′) = −〈T ψ+

α (x)ψ+
α′(x ′)〉

Fββ ′(xx ′) = −〈Tψβ(x)ψβ ′(x ′)〉 D(xx ′) = −〈T ϕ(x)ϕ(x ′)〉. (3)

Here x = (�x, τ ) and ψ+
α (x), ψα(x) are the Heisenberg operators of the particles with the

spin α in position x , where the notation 〈· · ·〉 implies averaging over the states of the system
of interacting particles. Then, we study the joint influence of the electron–phonon and the
electron–impurity interactions on the electron Green functions (3). To do this we go in these
functions to the interaction’s representation and use perturbation theory [30]. Next we write the
series of the perturbation theory for the Green functions (3), perform averaging over positions
�Rn of the chaotically distributed magnetic impurity and over the orientations of their spins �S

with the help of the relationship

Vα1β1(�x1)Vα2β2(�x2) = c

V

∑
�q

e−i�q(�x1−�x2)

[
|V1(�q)|2 +

1

12
S(S + 1)|V2(�q)|2

∑
i

σ i
α1β1

σ i
α2β2

]
. (4)

Here c is the impurity concentration. Insert (4) into the above-mentioned series of the
perturbation theory for the electron Green functions and perform a summation over spin
variables. In this way we obtain the system of equations for the Green functions G and
F . We present their values near the temperature of the superconducting transition (T ∼ TC)

in the �k� representation:

Ḡ( �p,�) = 1

i� − ε �p − MN ( �p,�)
; F̄( �p,�) = Ḡ(− �p,−�)s( �p,�)Ḡ( �p,�) (5)

where MN ( �p,�) and S( �p,�) include the electron–phonon and electron–impurity
interactions.
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In the diagrams below, expressions for these self-energies can be given in the form

MN ( �p,�) = M0
N ( �p,�) +

(6)

S( �p,�) = 0
S( �p,�) +

. (7)

Here M0
N ( �p,�) and 0

S( �p,�) contain diagrams corresponding to the electron–phonon
interaction (including all possible ‘intersecting’ lines) [12]. The full lines in M0

N and 0
S

and also in (6) and (7) represent the complete Green function averaging over the positions of
the chaotically distributed impurity and the orientations of their spins. The wavy line refers
to the electron–phonon interaction and the broken line to the electron–impurity interaction.
So, self-energies contain the diagrams with the intersection of the line of electron–phonon
interaction both with the line of electron–phonon and electron–impurity interactions as well
as the usual electron–phonon and electron–impurity diagrams.

The advantage of the method of anomalous propagators is that the diagrammatic scheme
is defined only from the point of view of the self-energy. In this way [12, 20] the Ward
identities are automatically satisfied and the eventual inclusion of higher-order diagrams is
straightforward. As to the Ward identities the inclusions of vertex corrections in the gap
equation implies the inclusion of the same corrections in the self-energy (see equations (1)
and (6) in [20]). Here the same situation takes place including only the first nonadiabatic
contributions.

In the expressions (6) and (7) we omit the diagrams containing the intersection of electron–
impurity lines because their contribution is known to be much less than the contribution from
the diagrams with noncrossing electron–impurity lines [30]. The contribution of the crossing
diagrams is of order 1/ lpF � 1 (l is the mean free path).

Here we use the model representation for the coupling of the electron–phonon interaction
and the electron–impurity interaction:

|g �p �p1 |2 = g2

(
2kF

qc

)2

θ(qc − | �p − �p1|) (8)

W±( �p − �p1) = W±
(

2kF

qc1

)2

θ(qc1 − | �p − �p1|) (9)

where

W± = c[V 2
1 ± 1

4 S(S + 1)V 2
2 ].

The coupling of the electron–phonon interaction gpp′ (8) is chosen in accordance with the
theory [11, 12] (see also [22, 23]) in which qc is a small quantity (qc � 2kF). In [22, 23] it
was shown that for small hole doping δ strong Coulomb correlations renormalize the electron–
phonon interaction, giving rise to the strong forward scattering peak, while the backward
scattering is strongly suppressed. This renormalization of the coupling of the electron–phonon
interaction is described by the vertex function (8), where g is the bare coupling constant and
the residual part of (8), forming the vertex function, is strongly peaked at �q = 0. The physical
meaning of this renormalization is that each quasiparticle due to the suppression of the double
occupancy on the same lattice-strong correlations, is surrounded by a giant correlation hole
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with characteristic size R ∼ a/δ, where a is the lattice constant. In [11, 12] it was shown that
in the presence of the pronounced forward electron–phonon interaction the vertex corrections
at low values of q result in positive values of the vertex functions and high values of the
temperature of the superconducting transition.

Strong electron correlations undoubtedly affect the electron–impurity interaction in a
similar manner to the electron–phonon interaction (9),where W± is the bare scattering impurity
potential and the residual part of (9), forming the vertex function, is strongly peaked at �q = 0
because the quasiparticle is surrounded by a giant correlation hole. But the measure of the
localization (renormalization) of the impurity potential differs qualitatively from the measure
of the electron–phonon interaction. So we assume here the momentum cut-off qc1 �= qc for
the sake of generality. The difference of qc1 from qc may be unimportant because of their
smallness.

The first step in the solution of the gap equation is to perform an average over momenta.
For the adiabatic case it is consistent to perform this average over the Fermi surface. But
in the nonadiabatic case the average over momenta differs from the average over the Fermi
surface only in the higher-order nonadiabaticity corrections [12]. Therefore, the momentum
dependence of the self-energies (6) and (7) is eliminated, leaving only their dependence on the
frequencies. Hereafter, 〈〈· · ·〉〉F S means the average over the Fermi surface.

In terms of definitions (8) and (9) the expressions for self-energies MN ( �p,�) and
S( �p,�), averaged over the Fermi surface, can be presented in the following form:

〈〈MN ( �p,�)〉〉F S = MN (�) = 1

βV

∑
�p1,�1

V̄N (�,�1)Ḡ( �p1,�1) +
1

V

∑
�p1

W̄+Ḡ( �p1,�) (10)

〈〈S(�)〉〉F S = S(�) = 1

βV

∑
�p1,�1

V̄s(�,�1)F̄( �p1,�1) +
1

V

∑
�p1

W̄− F̄( �p1,�) (11)

where the effective electron–phonon V̄N , V̄S and electron–impurity W̄± couplings, including
the first nonadiabatic contributions, are given by

V̄N (��1) = −g2 D(��1)[1 + λP̄V (Qc,��1)] (12)

V̄S(��1) = −g2 D(��1)[1 + 2λP̄V (Qc,��1) + λP̄c(Qc,��1)] − λD(��1)

× [� I
c (Qc Qc1,��1) + � I I

c (Qc Qc1,��1) + �V (Qc Qc1,��1)] (13)

W̄± = W±[1 + 2λP̄V (��)]; P̄V (��) = P̄V (Qc,��1)|�1=�. (14)

Here P̄V , P̄c and �V , �c are the vertex corrections to the self-energies, averaged over the Fermi
surface:

P̄V (Qc,��1) = − 1

βV

〈〈 ∑
�p2,�2

(
2kF

qc

)2 1

N0
θ(qc − | �p − �p2|)

× Ḡ( �p2,�2)Ḡ( �p1 + �p2 − �p,�1 + �2 − �)D(�,�2)

〉〉
F S

(15)

P̄c(Qc,��1) = − 1

βV

〈〈 ∑
�p2,�2

(
2kF

qc

)2 1

N0
θ(qc − | �p − �p2|)

× Ḡ( �p2,�2)Ḡ( �p2 − �p − �p1,�2 − � − �1)D(�,�2)

〉〉
F S

(16)
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�V (Qc Qc1,��1) = W+

〈〈∑
�p2

(
2kF

qc1

)2 1

N0V
θ(qc1 − | �p − �p2|)

× Ḡ( �p1 + �p2 − �p,�1)Ḡ( �p2,�)

〉〉
F S

(17)

� I
c (Qc Qc1,��1) = W−

〈〈∑
�p2

(
2kF

qc

)2 1

N0V
θ(qc − | �p − �p2|)

× Ḡ( �p2,�1)Ḡ( �p2 − �p1 − �p,−�)

〉〉
F S

. (18)

� I I
c is obtained from � I

c by substituting qc ↔ qc1 and �1 ↔ � (Qc = qc/2kF , Qc1 =
qc1/2kF ).

Note that (10), (11) and the quantities which enter into them contain the complete Green
functions, taking into account the electron–phonon and electron–impurity interactions in all
orders of perturbation theory. The approximation consists in accounting for only linear terms
with respect to nonadiabaticity (diagrams with crossing of two electron–phonon lines or of
electron–phonon and electron–impurity lines).

For the phonon propagator D(�,�1) the expression corresponding to the Einstein
spectrum ω0 is chosen:

D(�,�1) = − ω2
0

(� − �1)2 + ω2
0

. (19)

To calculate quantities (15)–(18) we apply the method developed in [11, 12]: we choose
the linear dispersion law of the electron energy and consider the low values of qc, qc1. These
assumptions permit us to perform integration over frequency �2, energy ε �p2 and angle variables
with the following averaging over the Fermi surface. In the weak coupling approximation
TC/ω0 � 1 we obtain

P̄V (Qc��1) = PV (Qc��1) + O

(
W+

ω0

)

P̄c(Qc��1) = Pc(Qc��1) + O

(
W−
ω0

) (20)

where PV , Pc are the quantities calculated in [12]. Because W±/ω0 ∼ W±/EF � 1, we can
neglect the difference of the quantities (20) from PV and Pc. Here we give their values at
� = 0 and �1 = ω0:

PV (Qc, 0, ω0) = PV (m, Qc) = −ϕ(m) +

[
π

4
− arctan

m

1 + m
+ ϕ(m)

]

× m2

4Q4
c

{√
ηc(m) − 1 − ln

1 +
√

ηc(m)

2

}

Pc(Qc, 0, ω0) = Pc(m, Qc) = −ϕ(m) +

[
π

4
− arctan

m

1 + m
+ ϕ(m)

]

× m

4Q2
c(1 − Q2

c/2)
arctan

4Q2
c(1 − Q2

c/2)

m

(21)
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where

ϕ(m) = m(1 + m)
(1 + m)2 + 2m2

[(1 + m)2 + m2]2
; ηc(m) = 1 +

(
4Q2

c

m

)2

PV (��)|�=0 = − m

1 + m
.

(22)

Here m = 2ω0/EF is the Migdal parameter.
For the quantities �V and �c caused by the joint electron–phonon and impurity scattering

we obtain

�V (Qc Qc1,��1) = W+

{
L(��1) + [K (��1) − (� − �1)

2 L(��1)]
1

4E2
F Q2

c Q2
c1

×
[√

1 +

(
2EF Qc Qc1

� − �1

)2

− 1 − ln
1

2

(
1 +

√
1 +

(
2EF Qc Qc1

� − �1

)2
)]}

(23)

� I
c (Qc Qc1,��1) = W−

{
L(−�1�) +

[
K (−�1�)

� + �1
− (� + �1)L(−�1�)

]

× 1

2EF Q2
c Q2

c1

∫ Qc1

0

Q dQ

1 − Q2
arctan

4Q2
c EF (1 − Q2)

� + �1

}
(24)

where

K (��1) = 2(� − �1)

[
arctan

EF

�
− arctan

EF

�1

]

L(��1) = − EF

E2
F + �2

1

+
� − �1

�3
1

EF

[1 + (EF/�1)2]2
.

(25)

Furthermore, in (10) and (11) we perform conventionally the integration over the energy in the
limits −EF < ε �p1 < EF and introduce the definitions

�̃ = �̃(�) = � − Im MN (�)

= � +
π N0

β

∑
�1

V̄N (��1)
�̃1

|�̃1|
2

π
arctan

EF

|�̃1|
+ π N0W̄+

�̃

|�̃|
2

π
arctan

EF

|�̃| (26)

(�) = �̃(�) = �̄ + π N0W̄−
�̃(�)

|�̃|
2

π
arctan

EF

|�̃| (27)

where

�̄ = π N0

β

∑
�1

V̄S(��1)
�̃(�1)

|�̃1|
2

π
arctan

EF

|�̃1|
. (28)

3. Temperature of superconducting transition and isotope effect

The self-consistent system of equations (26)–(28) is analysed here to clarify the joint influence
of both the nonadiabaticity effect and the paramagnetic impurity on the temperature of the
superconducting transition TC and the isotope coefficient α. To this end we make some
simplifications. In (12)–(14) we put � = 0, �1 = ω0 in square brackets, introduce the Migdal
parameter m = 2ω0/EF and consider the weak coupling approximation TC/ω0 � 1. Then
we further introduce the following notations:

λ� = λ[1 + 2λPV (m, Qc) + λPc(m, Qc) + � I
c (Qc Qc1, m)

+ � I I
c (Qc Qc1, m) + 2�V (Qc Qc1, m)] (29)

λz = λ[1 + λPV (m, Qc)]; W̄± = W±[1 + 2λPV (0, 0)]. (30)
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On the basis of (23)–(25), �V,c is easily seen to be of the order ∼W±/ω0 � 1, which
allows us to further neglect these terms in (29), considering the quantity λ� = λ0

�, irrespective
of the impurity concentration. Taking into account this fact and definitions (29) and (30),
equations (26)–(28) can have the following form:

�̄(�) = π

β
λ0

�

∑
�1

ω2
0

(� − �1)2 + ω2
0

�̃(�1)

|�̃1|
2

π
arctan

EF

|�̃1|

�̃(�) = �̄(�) + π N0W̄−
�̃(�)

|�̃|
2

π
arctan

EF

|�̃|
�̃ = �Z0 + π N0W̄+

2

π
arctan

EF

�̃

(31)

where

Z0 = 1 +
2π

β�
λz

∑
�1

ω2
0

(� − �1)2 + ω2
0

arctan
EF

|�̃1|
= 1 +

λz

1 + m
; λ0

� = λ�|c=0. (32)

Introducing the quantity u = �̃/�̃ and presenting the last two equations (31) and (32) in
the form

u(�) = �Z0

�̄
+

π N0

�̄
[W̄+ − W̄−]

2

π
arctan

EF

�̃
(33)

we also have

�̄(�) = π

β
λ0

�

∑
�1

ω2
0

(� − �1)2 + ω2
0

1

|u(�1)|
2

π
arctan

EF

|�̃1|
. (34)

As in the latter case (34), the function under notation of the sum is quickly decreased and we
can substitute the quantity u(�1) by its value in the field of low � and thus (34) may have the
form

�̄(�) = π

β
λ0

�

∑
�1

ω2
0

(� − �1)2 + ω2
0

�̄(�1)

Z0�1 + π N0[W̄+ − W̄−] sign �1

2

π
arctan

EF

|�̃1|
. (35)

Further, in this equation we perform algebraic transformations and approximations similar
to those of the adiabatic theory [31] (see also [12, 35]).

After making these calculations and neglecting terms of the order �/EF � 1, we obtain
for the temperature of superconducting transition TC :

ln
TC

TC0
= ψ

(
1

2

)
− ψ

(
1

2
+ ρ

)
. (36)

Here TC0 is determined by the following expression:

TC0 = 2ω0γe√
e(1 + m)π

exp

[
1

2

m

1 + m

]
exp

[
−1 + λz/(1 + m)

λ0
�

]
(37)

where γe is Euler’s constant. λz and λ0
� depend on m and Qc and ρ are given after formula (38):

ρ = �

2πTC
fc(m), fc(m) = 1

Z0

(
1 − 2λ

m

1 + m

)
,

� = 1

2τs
= 1

2
cN0π S(1 + S)V 2

2

. (38)

ψ is the digamma function and τs is the relaxation time of the scattering of electrons from the
magnetic impurity.
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Equation (36) coincides in its form with the corresponding equation of the Abrikosov–
Gor’kov theory [18, 25]. But TC0 and the scattering parameter ρ are redetermined and
essentially depend on the nonadiabaticity parameter m and the cut-off momentum Qc. On
the basis of (36) for the critical concentration of the impurity when TC = 0 we obtain

�cr = πTC0

2γe fc(m)
. (39)

Because fc(m) < 1, the decrease of TC with the increase of impurity concentration will
be weaker than in ordinary superconductors, and the critical concentration of the impurity will
be higher due both to higher values of TC0 and to fc(m) < 1. From the definition of the
scattering parameter ρ the nonadiabaticity effect (m �= 0) is seen to reduce it. The account of
nonadiabaticity results in the renormalization of some parameters of the theory. In particular,
these effects significantly increase the coupling of the electron–phonon interaction λ (29) acting
as an additional factor of attraction between electrons forming the Cooper pairs. This factor
is also revealed in the definition of the scattering parameter ρ and, as follows from (38), it is
contained in the quantity ρ (λ �= 0, m �= 0). This leads to the decrease of the scattering
parameter ρ. In its turn this weakens the pair destructive influence of the paramagnetic
impurity caused by the additional electron–phonon interaction described by diagrams with
crossed impurity and phonon lines.

Using (36) for the isotope coefficient α = −d ln TC/d ln M we obtain

α = α0 − �
2πTC

ψ ′(1/2 + ρ) d
d ln m fc(m)

1 − �
2πTC

ψ ′(1/2 + ρ) fc(m)
(40)

where α0 = −d ln TC0/d ln M . As f (m) < 1, α increases with increasing impurity
concentration. At m = 0, we obtain the case of ordinary superconductors [33].

Note that equation (36) is derived by assuming a low value of the cut-off momentum of
the electron–impurity interaction (qc1 � 2 pF). This choice of the quantity qc1 permits us
to perform analytical calculations for the impurity vertices �c,V (17) and (18). TC is seen
from (36) to be independent of the concentration of nonmagnetic impurity because at S = 0
we have TC = TC0. This result is in agreement with the Anderson theorem [34] according
to which a nonmagnetic impurity does not influence the quantity TC in isotropic systems.
Apparently this result may be considered as a criterion of the valid choice of low values of qc1.

4. Order parameter at T = 0 and energy gap

If T �= TC , the expressions for mass operators (6) and (7) contain the supplementary
diagrams with multiplications of two anomalous Green functions. It results in the additional
renormalization of the quantities VN (��1) and VS(��1) in the equations used to determine
the order parameter as well as the diagrams shown in (6) and (7). Nevertheless, in the weak
coupling approximation (ω0 � �) considered here, the contribution of these diagrams is
small. So we can assume that the parameters λ� and λz will have the same form as in the case
of the temperature of the superconducting transition TC (29) and (30).

Starting from definitions (5)–(7) and after making the operations similar to those in the
previous section we give the system of equations for determination of the order parameter �

in the following form:

Z� = πλ�

β

∑
�1

1√
u2 + 1

ω2
0

(� − �1)2 + ω2
0

arctan
EF

Z�̃
√

u2 + 1
(41)

�u = � + γ̄
u√

u2 + 1

2

π
arctan

EF

Z�̃
√

u2 + 1
(42)
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where

�̃
√

u2 + 1 ≈ �
√

u2 + 1 + N0W−
1√

u2 + 1

2

π
arctan

EF

Z�
√

u2 + 1

Z(�) ≈ 1 +
λzπ

β�

∑
�1

u√
u2 + 1

ω2
0

(� − �1)2 + ω2
0

arctan
EF

Z�
√

u2 + 1

γ̄ = π N0

Z0
[W̄+ − W̄−] = � fc(m).

(43)

Here we neglect the terms of the order W−/EF � 1 and further we will not take into account
terms of the order W+/EF and γ̄ /EF and γ̄ /ω0 � 1.

Then in expressions (41)–(43) we go from summation to integration in the usual manner.
Further we carry out similar transformations as in the previous section. Then equation (41)
has the form:

1 = λ0
�

∫ ∞

0

ω4
0

(�2
1 + ω2

0)
2

d�1

Z�
√

u2 + 1

2

π
arctan

EF

Z�
√

u2 + 1

= λ0
�

∫ ∞

0

ω2
0

�2
1 + ω2

0

d�1

Z�
√

u2 + 1

− λ0
�

∫ ∞

0

ω2
0

�2
1 + ω2

0

d�1

�
√

u2 + 1

2

π
arctan

Z�
√

u2 + 1

EF

− λ0
�

∫ ∞

0

ω2
0�

2
1

(�2
1 + ω2

0)
2

d�1

Z�
√

u2 + 1

2

π
arctan

EF

Z�
√

u2 + 1
. (44)

In the approximation γ̄ /EF � 1 proposed here, equation (42) has the form

�u = � + γ̄
u√

u2 + 1
. (45)

In the first term of equation (44) we go from integration over �1 to integration over u1, with
the help of relationship (45), under which the limits of integration have the following form:

u(0) =




0 at γ̄

�
< 1√(

γ̄

�

)2

− 1 at γ̄

�
> 1.

(46)

In this term we pick out the logarithmic singularity under �. In other terms of equation (44)
that singularity is absent because, in the weak coupling approximation, ω0 � � and at
γ /EF � 1 when calculating we can make � → 0 and γ → 0.

In this way we obtain

ln
�

�0
= − γ̄

�

π

4
at

γ̄

�
< 1

ln
�

�0
= − ln

[√(
γ̄

�

)2

− 1 +
γ̄

�

]
+

√
(

γ̄

�
)2 − 1

2 γ̄

�

− γ̄

2�
arctan

1√
(

γ̄

�
)2 − 1

at
γ̄

�
> 1

(47)

where

�0 = 2ω0

(m + 1)
√

e
exp

(
1

2

m

m + 1

)
exp

(
− Z0

λ0
�

)
. (48)



Properties of nonadiabatic superconducting systems with paramagnetic impurity 3277

Z is calculated on the basis of expression (43) in the approximation similar to the way of
calculating the last two terms of equation (44), and coincides with formula (32), while γ̄ is
defined by formula (43). Equations (47) at m = 0 coincide formally with the corresponding
expressions from [25, 26] in ordinary superconductors. In nonadiabatic systems the quantity
�0 (48) and the scattering parameter γ̄ = � fc(m) depend essentially on the Migdal parameter
m and the cut-off momentum of the phonon interaction Qc.

To determine the energy gap we consider the density of electron states as in [25, 26] by
the relationships

NS(�) = N0 Re
u√

u2 − 1
(49)

�u = � + iγ̄
u√

u2 − 1
(50)

where NS(�) = 0 at u < 1. Then we study equation (50) at u < 1:

� = �u − γ̄
u√

1 − u2
. (51)

The maximum value of � at which the density of electron states is equal to zero corresponds
to the value of the energy gap �g in the energy spectrum. We find �g and u(�g) with the help
of (51) from the condition d�/du = 0:

u(�g) =
[

1 −
(

γ̄

�

)2/3]1/2

, �g =
[

1 −
(

γ̄

�

)2/3]3/2

. (52)

From this equation it follows that, at γ̄ /� = 1, �g = 0, or with the help of (47),

γ̄�g=0 = �, or ��g=0 = �0(m)

fc(m)
exp

(
−π

4

)
. (53)

The last formula determines the critical concentration of the impurity at which the gapless
superconductivity starts. This quantity is essentially dependent on the Migdal parameter m.
As �0(m) > �0 (m = 0) and fc(m) < fc (m = 0), the quantity ��g=0 at m �= 0 is greater
than in ordinary superconductors.

5. Numerical calculations and conclusions

In numerical calculations low values of the transferred momentum (qc/2kF = 0.1) are chosen
in accordance with the results of [11, 12] where the nonadiabaticity effect results in a significant
rise of the temperature of the superconducting transition at qc � 2kF . The dependence of
TC/TC0 on �/2πT0 (T0 = TC0 at m = 0) is shown in figure 1. In figure 1 we can clearly see
the slower decrease of TC/TC0 on �/2πT0 with the increase of the non-adiabaticity parameter
m from the value m = 0 (the case of ordinary superconductors, curve 1) to some definite value
m = 0.085 (curve 3). Furthermore, on achieving for m the value m = 1 (curve 5) a larger
decrease of TC/TC0 on �/2πT0 in comparison with the case for m = 0.085 (curve 3) and a
smaller decrease in comparison with the case for m = 0 (curve 1) are observed. This unusual
behaviour of the relation TC/TC0 is described by the existence of the maximum (at m = 0.085)
in the dependence TC0 as a function of m (see [11, 35]). The appearance of the maximum in
the dependence of the critical impurity concentration on the Migdal parameter is due to this
fact.

In figure 2 we illustrate the dependence of the coefficient of the isotope effect as a function
of impurity concentration �/2πT0 with the change of the Migdal parameter m. The notation
of curves in this figure coincides with the notation in figure 1. We find that α increases with
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Figure 1. Dependence of TC/TC0 on �/2πT0 at different values of the Migdal parameter
m = 2ω0/EF .

impurity concentration and decreases with increase in m (curves 2–5). At a higher value of
the parameter m (>0.2) the coefficient of the isotope effect α can be less than 0.5 (see, for
example, curve 4) for both pure and doped superconductors, depending on the value of the
impurity concentration. At the value of ω0 ∼ EF (or m ∼ 1), which occurs in the high-TC

materials, α < 1/2 for pure superconductors (curve 5) and it can have values lower or higher
than 1/2 according to the impurity concentration.

We have studied various dependences of the quantities TC/TC0 and the coefficient of the
isotope effect α, assuming that the Migdal parameter m = 2ω0/EF changes from 0 to 1 and
that the value of the transferred momentum Qc � 1. As was noted in [11, 12] a small quantity
of Qc is due to the presence of strong electron correlations in the system. It is interesting to note
that lower values of m � 1 and Qc � 1 can result in higher values of TC . So the highest TC

can be achieved in systems with larger charge carrier density and strong electron correlations.
These materials are as yet unknown. Therefore it is interesting to study the field of variation of
the quantities m = 0.5–1 and Qc � 1, inherent to the high-TC materials. This is shown in the
figures given above. To understand the behaviour of the considered quantities in this field we
should make comparisons with the case of m = 0, which corresponds to the case of ordinary
superconductors. From figure 1 we can see how quickly superconductivity is suppressed at
different values of m. In the experiment, we have xcr = 0.01 in low temperature systems [37],
xcr = 0.04 in lanthanum ceramics [40] and xcr = 0.13–0.15 in yttrium ceramics [36]. These
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Figure 2. Dependence of the coefficient of the isotope effect α on �/2πT0 at different values of
the Migdal parameter m = 2ω0/EF .

values of the critical concentration of the impurity xcr are caused by the dependence of xcr on
both TC0 of the pure substance, which in the papers cited above is changed from TC0 = 7 K [37]
to TC0 = 40 K [40] and TC0 = 90 K [36], and on the properties of the basic substance. These
experimental data are in qualitative agreement with the theory given above. In this way both
nonadiabaticity effects (m �= 0) and strong electron correlations (Qc � 1), fixing the other
parameters of the given theory characterizing the superconducting state of a substance (λ
is the coupling of the electron–phonon interaction, ω0 is the Einstein frequency and other
characteristic quantities), are taken into account.

The studies of the coefficient of the isotope effect α clearly reveal its increase with
impurity concentration. In the case of the high-TC materials (ωD ∼ EF ) α as a function
of impurity concentration takes the low values (∼0.2) at low values of impurity concentration
and can achieve values of ∼1.5 and higher with the increase of impurity concentration.
Experimental studies concerning the coefficient of the isotope effect with the change of impurity
concentration, while suppressing TC , result in the increase of α [33], being strongly dependent
on the content of the substance. For example, in La2−x SrxCuO4 at x ≈ 0.11 and TC = 30 K
the value α ≈ 0.6 [38] was obtained, in Y1−x Prx Ba2Cu3O7 at TC ∼ 30 K α ≈ 0.4 [39] and in
the compounds La1.85Sr0.15Cu1−x Mx α gets the values 0.2 − 1.3 in accordance with impurity
concentration M = Ni, Fe [40]. These experimental studies are in good qualitative agreement
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Figure 3. The critical temperature TC , the order parameter �, and the energy gap �G at T = 0
plotted as a function of the inverse relaxation time � for the adiabatic systems (1–3) and nonadiabatic
ones (1′–3′) at m = 1.

with the above theory concerning the high-TC compounds (ωD ∼ EF = 0.1 eV). For example,
they prove the possibility of α changing from the value 0.25 to 1.5 (see, for example, curve 5
in figure 2). The value of α = 0.6 at �/2πT0 = 0.4 and m = 1 corresponds to the value of
this quantity in La1.85Sr0.15Cu1−x Mx at x ≈ 0.11 and TC = 30 K [38].

The dependence of the quantities TC/TC0, �/�0 and �g/�0 (�0
0 = �0|m=0) as a function

of impurity concentration is shown in figure 3 on the basis of solving the respective equations.
Full lines correspond to the case of m = 0 and the broken ones to the case of m = 1. This
figure gives the possibility of comparing the behaviour of the above mentioned quantities in
ordinary superconductors (curves 1–3) with the case of high-TC materials (curves 1′–3′). From
this figure we can clearly see that the field of the gapless state �cr − ��g=0 = 0.066�0(0) at
m = 0 and 0.257�0(0) at m = 1 arises in high-TC materials in comparison with the case of
ordinary superconductors.

From the studies performed above we can conclude that the nonadiabaticity effects and
strong electron correlations enforce the superconductivity. In doped systems with paramagnetic
impurity these factors favour weakening the destructive influence of the exchange interaction.
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For a simple model of an isotropic superconductor in the weak coupling approximation
(ω0 � TC) and at low concentrations of the impurity (�C/ω0, �/E � 1) we obtain:

(a) The equations for the quantities TC (36), � (47) and � (52) have the same form as in
the theory of normal superconductors with paramagnetic impurity [26, 30]. The main
difference is in the considerably increased renormalization of coupling of the electron–
phonon interaction λ at low values of the transferred momentum Qc � 2kF . This
smallness is determined by the presence of strong electron correlations in the system
caused by Coulomb interactions between electrons. The increase of λ in its turn increases
the temperature of the superconducting transition TC0 (37) and order parameter �0 (50).
Renormalization of the parameter ρ (38), which is essentially dependent on the Migdal
parameter m = 2ω0/EF , decreased with the m increase in comparison with the case of
normal superconductors (m = 0). As a result we obtain the smaller reduction of relations
TC/TC0, �/�0 and �G/�0 with increasing concentration of impurity, in contrast to
normal superconductors (see figures 1 and 3).

(b) The coefficient of the isotope effect α decreases with increase of the parameter m and
increases with increasing concentration of the impurity (figure 2). In this case the increase
of the quantity α is weakened contrary to the case of normal superconductors. Low values
of α are shown to be achieved in pure substances and these values can be remarkably
increased in doped substances. At m = 1, for instance, we obtain α = 0.25 at �/2πT0 = 0
and α = 0.6 at �/2πT0 ≈ 0.6 (curve 5, figure 2).

(c) The critical concentration of impurity �cr at which superconductivity is destroyed as a
function of the parameter m has a maximum at the point m = 0.085 (see figure 1). At
m ≈ 1, characterizing high-TC systems, the critical concentration �cr can also achieve
values considerably greater than in normal superconductors due to the large values of
TC0 and fc(m) < 1 (39). At m ∼ 1 the concentration of the impurity is ��G=0 at
which the gapless superconductivity begins (see figure 3). The Migdal parameter m (53)
influences considerably this concentration of impurity because of the large values of �0

and fc(m) < 1. The range of gapless superconductivity �cr − ��G=0 is also increased
due to the effects of nonadiabaticity.
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[10] Grimaldi C, Pietronero L and Strässler S 1995 Phys. Rev. Lett. 75 1158
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